Message
Изображение №
© 2020-2025 МСЦ РАН
Эйлер Леонард. Opera omnia. Ser.1 V.18: Commentationes analyticae ad theoriam integralium pertinentes
INDEX
475. Speculationes analyticae
499. De integratione formulae \int { dxlx / \sqrt(1 - xx) } ab x = 0 ad x = 1 extensa
500. De valore formulae integralis \int { (x^{\alpha-1}dx/lx) x ((1 - x^b)(1 - x^c) / (1 - x^n)) } a termino x = 0 usque ad x = 1 extensae
521. Theoremes analytiques. Extraits de differentes lettres de M. Euler a M. le Marquis de Condorcet
539. Supplementum calculi integralis pro integratione formularum irrationalium
572. Nova methodus integrandi formulas differentiales rationales sine subsidio quantitatum imaginariarum
587. Observationes in aliquot theoremata illustrissimi de la Grange
588. Investigatio formulae integralis \int { x^{m-1}dx / (1 + x^k)^n } casu quo post integrationem statuitur x=\infty
589. Investigatio valoris integralis \int { x^{m-1}dx / (1 - 2x^k\cos\theta + x^{2k}) } a termino x = 0 usque ad x = \infty extensi
594. Methodus inveniendi formulas integrales, quae certis casibus datam inter se teneant rationem, ubi simul methodus traditur fractiones continuas summandi
606. Speculationes super formula integrali \int { x^n dx / \sqrt {(aa - 2bx + cxx) }, ubi simul egregiae observationes circa fractiones continuas occurrunt
620. Methodus facilis inveniendi integrale huius formulae \int {(dx/x) x ((x^{n+p} - 2x^n\cos\zeta + x^{n-p}) / (x^{2n} - 2x^n\cos\theta + 1))} casu, quo post integrationem ponitur vel x = 1 vel x = \infty
621. De summo usu calculi imaginariorum in analysi
629. Evolutio formulas integrales \int { dx (1/(1-x) + 1/lx)} a termino x = 0 usque \ad x = 1 extensae
630. Uberior explicatio methodi singularis nuper expositae integralia alias maxime abscondita investigandi
635. Innumera theoremata circa formulas integrales, quorum demonstratio vires analyseos superare videatur
640. Comparatio valorum formulae integralis \int { (x^{p-1}dx) / \root n of {(1 - x^n)^{n-q}} }
Additamentum ad dissertationem de valoribus formulae integralis \int { (x^{p-1}dx) / \root n of{(1 - x^n)^{n-q}} } ab x = 0 ad x = 1 extensae
651. Quatuor theoremata maxime notatu digna in calculo integrali
653. De iterata integratione formularum integralium, dum aliquis exponens pro variabili assumitur